If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+25=75
We move all terms to the left:
4x^2+25-(75)=0
We add all the numbers together, and all the variables
4x^2-50=0
a = 4; b = 0; c = -50;
Δ = b2-4ac
Δ = 02-4·4·(-50)
Δ = 800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{800}=\sqrt{400*2}=\sqrt{400}*\sqrt{2}=20\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{2}}{2*4}=\frac{0-20\sqrt{2}}{8} =-\frac{20\sqrt{2}}{8} =-\frac{5\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{2}}{2*4}=\frac{0+20\sqrt{2}}{8} =\frac{20\sqrt{2}}{8} =\frac{5\sqrt{2}}{2} $
| 7x-5=12-8 | | 8=4a-8 | | 4x10=40 | | 176=6+7(2-7r) | | -3x+5=-8+5x | | 54x=5,076 | | 0.8+0.4x=0.3x+0.2 | | -v-10+7=2+v | | 3/4x=10/11 | | 2u-15=3 | | 5+4(x-1)=-2x-9 | | 39=3w-12 | | H(t)=-5t2+5t+5 | | X^+121=-22x | | 17x-23+7x+2=180 | | 4(2+a)=2 | | 2(x+1)-8=3x-1 | | 4x/5-1/3=6 | | 4/9=-8y | | 3x-7+4x-1=190 | | y-7.82=2.61 | | 48=-84a-6+32a | | 2x-19+2x+9+x=180 | | 5x−15=−25 | | 40=4x-5 | | (x/3)-4=2 | | 2x-19=2x+9 | | -5x^-6=-4x | | 2x-19=2x+9=x | | 2(3g+2)=12(12g+8) | | 11w-9w=18 | | 3/f=4 |